

- 1182 Supplemental Figures 1-7
- 1183 Supplemental Table 1
- 1184 Supplemental Movies 1-10

1189 Supplemental figure 1. Co-trafficking of HCV particles with host proteins. (A)

1190 Representative montages from live cell fluorescence microscopy of TC-core HCV particles co-

1191 trafficking with GFP-LC3. (B) Velocity of individual TC-core puncta co-trafficking with AP1 or

- 1192 AP2. Experiments were replicated twice.

- **Supplemental figure 2. 7745 Kd**. Kd of compound 7745 for AAK1 as measured by a
- 1205 KINOMEscan kinase assay (DiscoverX).

Supplemental figure 3. Dose response of DENV infection to sunitinib and erlotinib. (A) 1209

Dose response of overall DENV infection to sunitinib and erlotinib measured by plaque assays at 1210 72 hours post-infection. Assay detection limit is marked with a dotted line. (B) Dose response of 1211 overall DENV infection to sunitinib/erlotinib combinations measured by luciferase assays at 48 1212

hours post-infection and normalized to DMSO control. All data shown are representative of at 1213 least two experiments with 6 biological replicates each. Shown are mean +/- s.d. PFU, plaque 1214

1215 1216 forming units.

- 1217
- 1218
- 1219
- 1220

Supplemental figure 4. Activity of sunitinib and erlotinib against additional flaviviruses. 1223

(A) Overall infection of murine embryonic fibroblast cells with WNV (black) and relative cell 1224 1225 viability (blue) following 24 hour treatment with sunitinib measured by focus formation and MTT assays, respectively. (B) Overall infection of Huh7 cells with ZIKV (black) and relative 1226 cell viability (blue) following 48 hour treatment with sunitinib and erlotinib measured by plaque 1227 and alamarBlue assays, respectively. Shown are representative experiments from at least two 1228 1229 conducted with 2 (panel A) and 6 (panel B) biological replicates each.

Supplemental figure 5. Regulation of EBOV entry and overall infection by AAK1, GAK 1233

1234 and their pharmacological inhibitors. (A, B) Quantification of rVSV-GP EBOV entry

measured in Vero cells at 3 hours post-infection by real-time PCR following knockdown of 1235 AAK1 and GAK (A) or inhibitor treatment (B). Plotted is expression of EBOV GP normalized to 1236

1237 GAPDH. Shown are mean +/- s.d. (n=3) relative to NT (A) or DMSO (B) controls (two-tailed unpaired t-test). **p<0.01, ***p<0.001 by 1-way ANOVA followed by Dunnett's multiple

comparisons test. Shown are representative experiments from at least two conducted.

1238

1239

1240

Supplemental figure 6. AAK1 and GAK inhibitors are protective in a dengue murine 1244 model. (A) Effect of sunitinib (SM) and erlotinib (E) on viral load in serum, spleen and liver on 1245 day 3 post-infection of AG-B6 mice measured by plaque assays. Drugs were administered 1246 intraperitoneally once daily. Doses are in mg/kg. *p<0.05, ***p<0.001 (nonparametric Mann-1247 Whitney test). Experiments were replicated twice. (B) Quantification of drug serum levels in 1248 AG-B6 mice by liquid chromatography-tandem mass spectrometry following intraperitoneal 1249 administration of a single dose of 30 mg/kg sunitinib and 30 mg/kg erlotinib (n=2). Analysis was 1250

performed by Integrated Analytical Solutions (Berkeley, Ca). Shown are representative 1251

- experiments from at least two conducted. 1252
- 1253

1256 Supplemental figure 7. siRNA screen testing the involvement of kinases inhibited by

1257 sunitinib and erlotinib in DENV infection. Overall DENV infection (black) measured by

1258 luciferase assays and relative cell viability (blue) measured by alamarBlue assays at 48 hours

1259 post-infection of siRNA-transfected Huh7 cells. Data are expressed relative to NT siRNA. Data

- 1260 are an average of two independent screens with 8 replicates each.

Supplemental Table 1. siRNA library against top 27 kinase targets of sunitinib and erlotinib.

1	287	
	201	

Pool	Duplex	Gene	GENE	Gene	Sequence
Catalog #	Catalog #	Symbol	ID	Accession	
1-003150-00	J-003150-09	KIT	3815	NM 000222	UAAAGGAAACGCUCGACUA
1-003150-00	J-003150-10	KIT	3815	NM_000222	AAACACGGCUUAAGCAAUU
L-003150-00	J-003150-11	KIT	3815	NM 000222	AACAGAACCUUCACUGAUA
L-003150-00	J-003150-12	KIT	3815	NM 000222	GUUCAAAGCAGGAAGAUCA
L-003137-00	J-003137-09	FLT3	2322	NM 004119	CAAGAAACGACACCGGAUA
L-003137-00	J-003137-10	FLT3	2322	NM 004119	GAAUUUAAGUCGUGUGUUC
L-003137-00	J-003137-11	FLT3	2322	NM 004119	GCAAUGAUAUUUGGGACUA
L-003137-00	J-003137-12	FLT3	2322	NM 004119	CGCAACAGCUUAUGGAAUU
L-003966-00	J-003966-12	MAP2K5	5607	NM 145162	CCUCCAAUAUGCUAGUAAA
L-003966-00	J-003966-13	MAP2K5	5607	NM 145162	UAAGUGCGAUUCAUCAUAU
L-003966-00	J-003966-14	MAP2K5	5607	NM_145162	GGAGCCAUUUGUACAUUUC
L-003966-00	J-003966-15	MAP2K5	5607	NM_145162	GAAUUGCAGUAGCAGUUGU
L-003148-00	J-003148-09	KDR	3791	NM 002253	GGGCAUGUACUGACGAUUA
L-003148-00	J-003148-10	KDR	3791	NM 002253	CUACAUUGUUCUUCCGAUA
L-003148-00	J-003148-11	KDR	3791	NM_002253	GGAAAUCUCUUGCAAGCUA
L-003148-00	J-003148-12	KDR	3791	NM_002253	GCGAUGGCCUCUUCUGUAA
L-003162-00	J-003162-11	PDGFRA	5156	NM_006206	CGAGACUCCUGUAACCUUA
L-003162-00	J-003162-12	PDGFRA	5156	NM_006206	GAGCUUCACCUAUCAAGUU
L-003162-00	J-003162-13	PDGFRA	5156	NM_006206	GACAGUGGCCAUUAUACUA
L-003162-00	J-003162-14	PDGFRA	5156	NM_006206	GAAUAGGGAUAGCUUCCUG
L-003163-00	J-003163-10	PDGFRB	5159	NM_002609	CAACGAGUCUCCAGUGCUA
L-003163-00	J-003163-11	PDGFRB	5159	NM_002609	GAGCGACGGUGGCUACAUG
L-003163-00	J-003163-12	PDGFRB	5159	NM_002609	GAAGCCACGUUACGAGAUC
L-003163-00	J-003163-13	PDGFRB	5159	NM_002609	GGUGGGCACACUACAAUUU
L-003114-00	J-003114-10	EGFR	1956	NM_201283	CAAAGUGUGUAACGGAAUA
L-003114-00	J-003114-11	EGFR	1956	NM_201283	CCAUAAAUGCUACGAAUAU
L-003114-00	J-003114-12	EGFR	1956	NM_201283	GUAACAAGCUCACGCAGUU
L-003114-00	J-003114-13	EGFR	1956	NM_201283	CAGAGGAUGUUCAAUAACU
L-003136-00	J-003136-10	FLT1	2321	NM_002019	GCCGGAAGUUGUAUGGUUA
L-003136-00	J-003136-11	FLT1	2321	NM_002019	UAGAAAGGGCUUCAUCAUA
L-003136-00	J-003136-12	FLT1	2321	NM_002019	GUGGCUGACUCUAGAAUUU
L-003136-00	J-003136-13	FLT1	2321	NM_002019	GUCAUUCCCUGCCGGGUUA
L-003109-00	J-003109-10	CSF1R	1436	NM_005211	GGAAGAUCAUCGAGAGCUA
L-003109-00	J-003109-11	CSF1R	1436	NM_005211	GGUGAAGGAUGGAUACCAA
L-003109-00	J-003109-12	CSF1R	1436	NM_005211	GUAACGUGCUGUUGACCAA
L-003109-00	J-003109-13	CSF1R	1436	NM_005211	CCAGCAGCGUUGAUGUUAA
L-005023-00	J-005023-06	PHKG1	5260	NM_006213	GCACAGGACUUCUAUGAGA
L-005023-00	J-005023-07	PHKG1	5260	NM_006213	GCACUGGCGUCAUCAUGUA
L-005023-00	J-005023-08	PHKG1	5260	NM_006213	CCAGAAAGAUCAUGCGAGC
L-005023-00	J-005023-09	PHKG1	5260	NM_006213	GAAGGACACUUAUGAGACC
L-004881-00	J-004881-13	PHKG2	5261	NM_000294	GAUCCGACUUUCAGAUUUC
L-004881-00	J-004881-14	PHKG2	5261	NM_000294	CUACGAGUCUUCUAGCUUC
L-004881-00	J-004881-15	PHKG2	5261	NM_000294	GGGAGACUCUGCUGCUAUA
L-004881-00	J-004881-16	PHKG2	5261	NM_000294	CGAGAAGCUUCGAGAGUUG
L-003104-00	J-003104-10	AXL	558	NM_001699	
L-003104-00	J-003104-11	AXL	558	NIVI_001699	
L-003104-00	J-003104-12	AXL	558	NIVI_001699	GACGAAAUCCUCUAUGUCA
L-003104-00	J-003104-13	AXL	558	NIVI_001699	GAAGGAGACCCGUUAUGGA
L-003256-00	J-003256-17	CHEK2	11200	INIVI_145862	GUAAGAAAGUAGCCAUAAA
L-003256-00	J-003256-18	CHEK2	11200	INIVI_145862	
L-003256-00	J-003256-19		11200	INIVI_145862	
L-003230-00	J-005277.05		0262	NM 004760	
L-005377-00	1 J-005377-05	I SINT/A	9/03		

L-005377-00	J-005377-06	STK17A	9263	NM_004760	UAACAUAUGUCAUGCUUAC
L-005377-00	J-005377-07	STK17A	9263	NM_004760	GAAUAUCACCUUUCUUAGG
L-005377-00	J-005377-08	STK17A	9263	NM_004760	CAUAUACUCUAGGACAAUG
L-004168-00	J-004168-09	STK10	6793	NM 005990	GAGCAAAUGCAUAAACGUU
L-004168-00	J-004168-10	STK10	6793	NM 005990	GAUCAUGAUUGAGUUCUGU
L-004168-00	J-004168-11	STK10	6793	NM 005990	CAAGCGGACACGCAAAUUU
L-004168-00	J-004168-12	STK10	6793	NM 005990	GGAGAACCAUACUCAGAAC
L-003478-01	J-003478-17	CSNK1D	1453	NM 001893	ACGAAAGGAUUAGCGAGAA
L-003478-01	J-003478-18	CSNK1D	1453	NM 001893	CGACCUCACAGGCCGACAA
L-003478-01	J-003478-19	CSNK1D	1453	NM 001893	GCCAAGAAGUACCGGGAUG
L-003478-01	J-003478-20	CSNK1D	1453	NM 001893	AGGCUACCCUUCCGAAUUU
L-003479-00	J-003479-10	CSNK1E	1454	NM 001894	CCACCAAGCGCCAGAAGUA
1-003479-00	J-003479-11	CSNK1F	1454	NM_001894	CCUCCGAAUUCUCAACAUA
1-003479-00	J-003479-12	CSNK1F	1454	NM_001894	CGACUACUCUUACCUACGU
L-003479-00	J-003479-13	CSNK1E	1454	NM 001894	GAUCAGCCGCAUCGAGUAU
1-003586-00	J-003586-07	MAP4K1	11184	NM_007181	GAUACAAUGAGCUGUGUGA
L-003586-00	1-003586-08	MAP4K1	11184	NM_007181	
1-003586-00	J-003586-09	MAP4K1	11184	NM_007181	GGAGUUAUCUCUGGUUGCA
L-003586-00	J-003586-10	MAP4K1	11184	NM_007181	GAAAGGACCCUCCAUUGGG
1-004760-00	J-004760-12	IRAK1	3654	NM 001025243	GAUGAGAGGCUGACACCCA
1-004760-00	J-004760-13	IRAK1	3654	NM_001025243	CGAAGAAAGUGAUGAUUU
1-004760-00	J-004760-14	IRAK1	3654	NM_001025243	GCAAUUCAGUUUCUACAUC
L-004760-00	J-004760-15	IRAK1	3654	NM 001025243	GAGCUGAUGUGUUCACCUG
L-003144-00	.1-003144-13	ITK	3702	NM_005546	AGACAUCAGUACCGGAUUU
L-003144-00	J-003144-14	ITK	3702	NM_005546	ACAGUUUGGUGCCUAAAUA
1-003144-00	J-003144-15	ITK	3702	NM_005546	UCAACUAUCACCAACAUAA
L-003144-00	J-003144-16	ITK	3702	NM 005546	CCACACACGUCUACCAGAU
1-004157-00	J-004157-06	STK4	6789	NM_006282	CCAGAGCUAUGGUCAGAUA
L-004157-00	J-004157-07	STK4	6789	NM_006282	GCCCUCAUGUAGUCAAAUA
1-004157-00	J-004157-08	STK4	6789	NM_006282	GAUGGGCACUGUCCGAGUA
L-004157-00	J-004157-09	STK4	6789	NM 006282	UAAAGAGACCGGCCAGAUU
1-027171-01	J-027171-13	MYI K4	340156	NM_001012418	GAGAAGAGUUGGCGAAUAA
L-027171-01	J-027171-14	MYLK4	340156	NM 001012418	CGGAAAGGAUGCCCGUCAA
L-027171-01	J-027171-15	MYLK4	340156	NM 001012418	GAAAUUAAGCACCGAUGUA
L-027171-01	J-027171-16	MYLK4	340156	NM 001012418	GUGAAGGCCACAUGCGAAU
L-003614-00	J-003614-05	PAK3	5063	NM 002578	CAAAGUAAACGAAGCACUA
L-003614-00	J-003614-06	PAK3	5063	NM 002578	GGGCAUCAGGUACUGUUUA
L-003614-00	J-003614-07	PAK3	5063	NM 002578	GAGAGACUGUCAGCUGUAU
L-003614-00	J-003614-08	PAK3	5063	NM 002578	GCAAUGGGCACGAUUACUC
L-003170-00	J-003170-09	RET	5979	NM 020630	CAGGAGGGCUCGCCGAUUU
L-003170-00	J-003170-10	RET	5979	NM 020630	AGAGACGGCUGGAGUGUGA
L-003170-00	J-003170-11	RET	5979	NM 020630	GGGCGACCGUACAUGACUA
L-003170-00	J-003170-12	RET	5979	NM_020630	GUCCCGAGAUGUUUAUGAA
L-004663-00	J-004663-06	RPS6KA2	6196	NM_001006932	CAAGCGAUGUGUGCAUAAA
L-004663-00	J-004663-07	RPS6KA2	6196	NM_001006932	UAAUGGAGCUGAUGCGUGG
L-004663-00	J-004663-08	RPS6KA2	6196	NM_001006932	GGAACACGCUGUACCGGAA
L-004663-00	J-004663-09	RPS6KA2	6196	NM_001006932	GCAAAUGGGCCAGACGAUA
L-005383-00	J-005383-07	STK33	65975	NM 030906	GAGCAUAGGCGUCGUAAUG
L-005383-00	J-005383-08	STK33	65975	NM_030906	GCUGAUAGUGGCUUAGAUA
L-005383-00	J-005383-09	STK33	65975	NM_030906	CGCAUCAGCUAUAGCAUAU
L-005383-00	J-005383-10	STK33	65975	NM_030906	GAAGCAAAGUAGGAGUGAA
L-005396-00	J-005396-06	ULK2	9706	NM_014683	GUGGAGACCUCGCAGAUUA
L-005396-00	J-005396-07	ULK2	9706	NM_014683	UCAGACCACUCAUGUGAUA
L-005396-00	J-005396-08	ULK2	9706	NM_014683	CGAUAUAAAUUCUGCAUCA
L-005396-00	J-005396-09	ULK2	9706	NM_014683	UCCAAGAUCUGCAGUGGUA
L-005300-02	J-005300-05	AAK1	22848	NM_014911	CCUCGGACCUCUCAACAAA
L-005300-02	J-005300-07	AAK1	22848	NM_014911	ACAAAAGGCCGGAUAUUUA
L-005300-02	J-005300-08	AAK1	22848	NM_014911	GGAAGGUGGAUUUGCUAUU
L-005300-02	J-005300-17	AAK1	22848	NM_014911	GCGUAUUCUCAGUGACGUA

D-001810-10	D-001810-01	NT Control	N/A	N/A	UGGUUUACAUGUCGACUAA
D-001810-10	D-001810-02	NT Control	N/A	N/A	UGGUUUACAUGUUGUGUGA
D-001810-10	D-001810-03	NT Control	N/A	N/A	UGGUUUACAUGUUUUCUGA
D-001810-10	D-001810-04	NT Control	N/A	N/A	UGGUUUACAUGUUUUCCUA

1294 Supplemental Videos

- **Supplemental Video 1.** Co-trafficking of TC-core HCV with AP1. Representative video. TC-core (green), AP1 (red).
- Supplemental Video 2. Co-trafficking of TC-core HCV with AP2. Representative video. TC-core (green), AP2
 (red).

1300 Supplemental Video 3. Co-trafficking of TC-core HCV with LC3. Representative video. TC-core (red), LC (green).

Supplemental Video 4. Co-trafficking of TC-core Y136A HCV with AP2. Representative video. Mutant TC-core 1302 (green), AP2 (red).

Supplemental Video 5. Co-trafficking of TC-core HCV with AP1 upon vehicle treatment. Representative video.

1304 TC-core (green), AP1 (red).

Supplemental Video 6. Co-trafficking of TC-core HCV with AP1 upon sunitinib treatment. Representative video.
 TC-core (green), AP1 (red).

1306 IC-core (green), API (red).

Supplemental Video 7. Co-trafficking of TC-core HCV with AP1 upon sunitinib treatment. Representative video.

1308 TC-core (green), AP1 (red).

1309 Supplemental Video 8. Co-trafficking of TC-core HCV with AP2 upon vehicle treatment. Representative video.

1310 TC-core (green), AP2 (red).

Supplemental Video 9. Co-trafficking of TC-core HCV with AP2 upon sunitinib treatment. Representative video.

- 1312 TC-core (green), AP2 (red).
- **Supplemental Video 10.** Co-trafficking of TC-core HCV with AP2 upon erlotinib treatment. Representative video.

- 1314 TC-core (green), AP2 (red).

Full uncut gel for Figure 1A

Α			
	shRNA:	NT	AP-1
i -	AP-1	-	
ii	Actin	-	-
	shRNA:	NT	AP-2
iii	AP-2	-	-
iv	Actin	-	-

Full uncut gel for Figure 1E

Full uncut gel for Figure 2A

Α

Full uncut gel for Figure 2E

Full uncut gel for Figure 6D

Full uncut gel for Figure 6E

	WT T156A Ctr _{AP-2} AP-2	
i.	AP-2	
ii	Actin	

Full uncut gel for Figure 6G

