Controlled Elimination of Intracellular H2O2: Regulation of Peroxiredoxin, Catalase, and Glutathione Peroxidase via Post-translational Modification

SG Rhee, KS Yang, SW Kang, HA Woo… - Antioxidants & redox …, 2005 - liebertpub.com
SG Rhee, KS Yang, SW Kang, HA Woo, TS Chang
Antioxidants & redox signaling, 2005liebertpub.com
The predominant enzymes responsible for elimination of hydrogen peroxide (H2O2) in cells
are peroxiredoxins (Prxs), catalase, and glutathione peroxidases (GPxs). Evidence suggests
that catalytic activities of certain isoforms of these H2O2-eliminating enzymes are
extensively regulated via posttranslational modification. Prx I and Prx II become inactivated
when phosphorylated on Thr90 by cyclin B-dependent kinase Cdc2. In addition, the active-
site cysteine of Prx I–IV undergoes a reversible sulfinylation (oxidation to cysteine sulfinic …
The predominant enzymes responsible for elimination of hydrogen peroxide (H2O2) in cells are peroxiredoxins (Prxs), catalase, and glutathione peroxidases (GPxs). Evidence suggests that catalytic activities of certain isoforms of these H2O2-eliminating enzymes are extensively regulated via posttranslational modification. Prx I and Prx II become inactivated when phosphorylated on Thr90 by cyclin B-dependent kinase Cdc2. In addition, the active-site cysteine of Prx I–IV undergoes a reversible sulfinylation (oxidation to cysteine sulfinic acid) in cells. Desulfinylation (reduction to cysteine) is achieved by a novel enzyme named sulfiredoxin. c-Abl and Arg nonreceptor protein tyrosine kinases associate with catalase in cells treated with H2O2 by mechanisms involving the SH3 domains of the kinases and the Pro293PheAsnPro motif of catalase and activate catalase by phosphorylating it on Tyr231 and Tyr386. Similarily, GPx1 is activated by c-Abl- and Arg-mediated phosphorylation. The tyrosine phosphorylation is critical for ubiquitination-dependent degradation of catalase. Antioxid. Redox Signal. 7, 619–626.
Mary Ann Liebert